Benefits of the Exascale ECP and CAMPA programs to the modeling of PWFA

Jean-Luc Vay

Lawrence Berkeley National Laboratory
<table>
<thead>
<tr>
<th>Title</th>
<th>Team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computing the Sky at Extreme Scales</td>
<td>Salman Habib (ANL)+LANL, LBNL</td>
</tr>
<tr>
<td>Exascale Deep Learning and Simulation Enabled Precision Medicine for Cancer</td>
<td>Rick Stevens (ANL)+LANL, LLNL, ORNL, NIH/NCI</td>
</tr>
<tr>
<td>Exascale Lattice Gauge Theory Opportunities and Requirements for Nuclear and High Energy Physics</td>
<td>Paul Mackenzie (FNAL)+BNL, TJNAF, Boston U., Columbia U., U. of Utah, Indiana U., UIUC, Stony Brook, College of William & Mary</td>
</tr>
<tr>
<td>Molecular Dynamics at the Exascale: Spanning the Accuracy, Length and Time Scales for Critical Problems in Materials Science</td>
<td>Arthur Voter (LANL)+SNL, U. of Tennessee</td>
</tr>
<tr>
<td>Exascale Modeling of Advanced Particle Accelerators</td>
<td>Jean-Luc Vay (BNL)+LLNL, SLAC</td>
</tr>
<tr>
<td>An Exascale Subsurface Simulator of Coupled Flow, Transport, Reactions and Mechanics</td>
<td>Carl Steefel (BNL)+LLNL, NETL</td>
</tr>
<tr>
<td>Exascale Predictive Wind Plant Flow Physics Modeling</td>
<td>Steve Hammond (NREL)+SNL, ORNL, U. of Texas Austin</td>
</tr>
<tr>
<td>QMCPACK: A Framework for Predictive and Systematically Improvable Quantum-Mechanics Based Simulations of Materials</td>
<td>Paul Kent (ORNL)+ANL, LLNL, SNL, Stone Ridge Technology, Intel, Nvidia</td>
</tr>
<tr>
<td>Coupled Monte Carlo Neutronics and Fluid Flow Simulation of Small Modular Reactors</td>
<td>Thomas Evans (ORNL, PI)+ANL, INL, MIT</td>
</tr>
<tr>
<td>Transforming Additive Manufacturing through Exascale Simulation (TrAMEX)</td>
<td>John Turner (ORNL)+LLNL, LANL, NIST</td>
</tr>
<tr>
<td>NWChemEx: Tackling Chemical, Materials and Biomolecular Challenges in the Exascale Era</td>
<td>T. H. Dunning, Jr. (PNNL), +Ames, ANL, BNL, LBNL, ORNL, PNNL, Virginia Tech</td>
</tr>
<tr>
<td>High-Fidelity Whole Device Modeling of Magnetically Confined Fusion Plasma</td>
<td>Amitava Bhattacharjee (PPPL)+ANL, ORNL, LLNL, Rutgers, UCLA, U. of Colorado</td>
</tr>
<tr>
<td>Data Analytics at the Exascale for Free Electron Lasers</td>
<td>Amedeo Perazzo (SLAC)+LANL, LBNL, Stanford</td>
</tr>
<tr>
<td>Transforming Combustion Science and Technology+Exascale Simulations</td>
<td>Jackie Chen (SNL)+LBNL, NREL, ORNL, U. of Connecticut</td>
</tr>
<tr>
<td>Cloud-Resolving Climate Modeling of the Earth’s Water Cycle</td>
<td>Mark Taylor (SNL)+ANL, LANL, LLNL, ORNL, PNNL, UCI, CSU</td>
</tr>
</tbody>
</table>
Exascale Modeling of Advanced Particle Accelerators

Goal (4 years): Convergence study in 3-D of 10 consecutive multi-GeV stages in linear and bubble regime, for laser- & beam-driven plasma accelerators.

How: ➔ Combination of most advanced algorithms

➔ Coupling of Warp+BoxLib+PICSAR

➔ Port to emerging architectures (Xeon Phi, GPU)

Who: LBNL ATAP (accelerators) + LBNL CRD (computing science) + SLAC + LLNL

Ultimate goal: enable modeling of 100 stages by 2025 for 1 TeV collider design!
Plasma accelerators are challenging to model

Short driver/wake propagates through long plasma

⇒ Many time steps.

For a 10 GeV LPA scale stage:

- ~1µm wavelength laser propagates into ~1m plasma
 ⇒ millions of time steps needed

Non-linear regime:

very small features

⇒ small grid cells
20-100 stages need to be lined up for e⁻e⁺ linear collider

Simulations can currently take days for 1 stage (sometimes in RZ).
Need for ×100 stages ×100 ensemble ×1000 3D!
We will combine the most advanced algorithms

Lower # time steps:
• optimal Lorentz boosted frame
We will combine the most advanced algorithms

Lower # time steps:
• optimal Lorentz boosted frame

Higher accuracy:
• AMR
Boxlib will provide robust AMR capability

Warp

- User interface
- Vast collection of physics models & algorithms

BoxLib

- AMR
- Parallel I/O
- Load balancing

PICSAR

- Highly optimized elementary PIC operations

Hardware

Illustration

Warp’s refinement algorithm will be implemented in Boxlib

We will combine the most advanced algorithms

Lower # time steps:
- optimal Lorentz boosted frame

Higher accuracy:
- AMR
- Pseudo-spectral Analytical Maxwell solvers
Warp has arbitrary order EM solver in FDTD & PSTD (using leapfrog time integration)
Analytical pseudo-spectral solver offers exact solution + no Courant condition

Pseudo-Spectral Analytical Time-Domain \(^1\) (PSATD)
based on exact analytical integration in Fourier space

\[B_{z}^{n+1} = \mathcal{F}^{-1} \left(C \mathcal{F} (B_{z}^{n}) \right) + \mathcal{F}^{-1} \left(iS k_{y} \mathcal{F} (E_{x}) \right) - \mathcal{F}^{-1} \left(iS k_{x} \mathcal{F} (E_{y}) \right) \]

with \[C = \cos \left(kc \Delta t \right); \quad S = \sin \left(kc \Delta t \right); \quad k = \sqrt{k_{x}^{2} + k_{y}^{2}} \]

We will combine the most advanced algorithms

Lower # time steps:
- optimal Lorentz boosted frame

Higher accuracy:
- AMR
- Pseudo-spectral Analytical Maxwell solvers

Higher stability
- Galilean T. to suppress Numerical Cherenkov Instability
PSATD also enables integration in Galilean frame

Use Galilean coordinates that follow the relativistic plasma.

\[
\begin{align*}
\frac{\partial B}{\partial t} &= -\nabla \times E \\
\frac{1}{c^2} \frac{\partial E}{\partial t} &= \nabla \times B - \mu_0 j
\end{align*}
\]

+ integrate analytically, assuming \(j(x, t) \) is constant over one timestep.

Original idea by Manuel Kirchen (PhD student at U. Hamburg)
Derivation of the algorithm: Lehe et al., arxiv (2016)
Galilean PSATD is stable for uniform relativistic flow

Uniform plasma streaming in 2D periodic box

Analysis

Instability growth rate

Simulation

Lehe et al., arxiv (2016)
Galilean PSATD stability is geometry independent

Laser plasma acceleration simulation with FBPI*C
(uses azimuthal Fourier decomposition with 2 modes)

FBPIC is Open source: \url{https://github.com/fbpic/fbpic}.
We will combine the most advanced algorithms

Lower # time steps:
- optimal Lorentz boosted frame

Higher accuracy:
- AMR
- Pseudo-spectral Analytical Maxwell solvers

Higher stability
- Galilean T. to suppress Numerical Cherenkov Instability

Higher scalability
- FFT Maxwell solvers+domain decomposition
Spectral solvers involve global operations:

- harder to scale to large # of cores

Spectral

- global “costly” communications

Finite Difference (FDTD)

- local “cheap” communications

Finite speed of light ➔ local FFTs ➔ spectral accuracy + FDTD scaling!

PIC+PSATD scales very well to ~1M cores

strong parallel scaling for uniform warm plasma up-to >800,000 cores (Mira – ANL)

(Courtesy: H. Vincenti)
We will combine the most advanced algorithms

Lower # time steps:
- optimal Lorentz boosted frame

Higher accuracy:
- AMR
- Pseudo-spectral Analytical Maxwell solvers

Higher stability
- Galilean T. to suppress Numerical Cherenkov Instability

Higher scalability
- FFT Maxwell solvers+domain decomposition

Lower dimensionality
- FFT+Hankel Transform Maxwell solver for quasi-RZ geom

....and porting to fastest hardware.
We were already preparing for Exascale with NERSC Exascale Applications Program (NESAP)

NESAP Codes

- Advanced Scientific Computing Research
 - Almgren (LBNL) - BoxLib
 - AMR Framework
 - Trebotich (LBNL) - Chombo-crunch

- High Energy Physics
 - Vay (LBNL) - WARP & IMPACT
 - Toussaint (Arizona) - MILC
 - Habib (ANL) - HACC

- Nuclear Physics
 - Maris (Iowa)
 - Joo (JLAB)
 - Christ/Kars (Columbia)

Warp kernel ➔ Particle-In-Cell Scalable Architecture Resources (PICSAR)

Optimized MPI + OpenMP + vec. + tiling/sorting

- Brian Friesen
 - Ex-NESAP postdoc (now at NERSC)

- Mathieu Lobet
 - NESAP postdoc

- Collaboration with
 Henri Vincenti
 Marie Curie postdoc fellowship (CEA, Saclay, France)

Set of milestones provides progressive path toward end of award period deliverable

<table>
<thead>
<tr>
<th>Year/Quarter</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1/Q1</td>
<td>Initial coupling of Boxlib and Warp/PICSAR.</td>
</tr>
<tr>
<td>Year 1/Q2</td>
<td>Modeling of single plasma-based accelerator stage with WarpX on single grid.</td>
</tr>
<tr>
<td>Year 1/Q3</td>
<td>Add MR to coupling of Boxlib and PICSAR</td>
</tr>
<tr>
<td>Year 1/Q4</td>
<td>Modeling of single plasma-based accelerator stage with WarpX with static MR.</td>
</tr>
<tr>
<td>Year 2/Q1</td>
<td>Assess performance of python parallel startup, dump/restart, I/O, Lorentz back transformation diagnostic, in-situ and post-processing capabilities on hundreds of thousands to a million of cores.</td>
</tr>
<tr>
<td>Year 2/Q2</td>
<td>Optimized simulations of a uniform plasma on hundreds of thousands to millions of cores, without MR; assess strong scaling.</td>
</tr>
<tr>
<td>Year 2/Q3</td>
<td>Convergence study in 3-D of one multi-GeV plasma-based accelerator stage in linear & bubble regime, without MR.</td>
</tr>
<tr>
<td>Year 2/Q4</td>
<td>Convergence study in 3-D of one multi-GeV plasma-based accelerator stage in linear & bubble regime, with MR.</td>
</tr>
<tr>
<td>Year 3/Q1</td>
<td>Assess performance of python parallel startup, dump/restart, I/O, Lorentz back transformation diagnostic, in-situ and post-processing capabilities on up-to 5 millions of cores.</td>
</tr>
<tr>
<td>Year 3/Q2</td>
<td>Conduct simulations of a uniform plasma on 5-to-10 millions of cores, without MR, and assess strong scaling.</td>
</tr>
<tr>
<td>Year 3/Q3</td>
<td>Convergence study in 3-D of three multi-GeV stages in linear & bubble regime, without MR.</td>
</tr>
<tr>
<td>Year 3/Q4</td>
<td>Convergence study in 3-D of three multi-GeV stages in linear & bubble regime, with MR. Release of software.</td>
</tr>
<tr>
<td>Year 4/Q1</td>
<td>Assess performance of python parallel startup, dump/restart, I/O, Lorentz back transformation diagnostic, in-situ and post-processing capabilities on up-to 10 Millions of cores.</td>
</tr>
<tr>
<td>Year 4/Q2</td>
<td>Conduct simulations of a uniform plasma on up-to 10 Millions of cores, without MR, and assess strong scaling.</td>
</tr>
<tr>
<td>Year 4/Q3</td>
<td>Convergence study in 3-D of ten consecutive multi-GeV stages in linear & bubble regime, without MR.</td>
</tr>
<tr>
<td>Year 4/Q4</td>
<td>Convergence study in 3-D of ten consecutive multi-GeV stages in linear & bubble regime, with MR. Release of software.</td>
</tr>
</tbody>
</table>
Emerging national consortium for accelerator modeling provides the foundations for community connections

Consortium for Advanced Modeling of Particle Accelerators

Points of contact:
- **LBNL:** J.-L. Vay
- **SLAC:** C.-K. Ng
- **FNAL:** J. Amundson
- **UCLA:** W. Mori

Activities:
- High Performance Computing (beyond SciDAC),
- coordination/integration of codes/modules, user interfaces, data formats, ...
- dissemination, support & training.

CAMPA

- **BLAST** (Warp, IMPACT, BeamBeam3D, PICSAR, Posinst)

SLAC

- **ACE3P** (Omega3P, S3P, Track3P, T3P, PIC3P, TEM3P)

Fermilab

- **SYNERGIA** (space-charge, wakes, e-cloud, beam-beam…)

UCLA

- **PICKSC** (Osiris, QuickPIC, UPIC, UPIC-EMMA, Oshun)
FY17: focus on developing common data formats & interfaces

- Example of cross-cutting data format:
 - a common I/O standard for simulations with particles and meshes
 - standardized layout of data in file (using hdf5, netcdf, ADIOS, ..)
 - for easy comparisons between codes, common visualization tools
 - implemented in various PIC codes: Warp, PIConGPU, FBPIX.
 - OpenPMD Viewer based on IPython+Matplotlib available
 - VisIt/Paraview reader in development

FY17: focus on developing common data formats & interfaces

• Currently, each code has own input script & output format
 ➔ user needs 1 input script/code & different data reader or software

Bridge codes to enable:
 • unified input/output interface
 • separation of description/resolution/analysis

• Define standard for common input
 ➔ translate to individual code “language”

• Usage of common data format enables common output & data analysis/visualization software
Summary

• New “Exascale Modeling of Advanced Particle Accelerators” to develop advanced PIC code with AMR for exascale computing
 ➔ enable fast converged simulations of chains of stages (LPA & PWFA)

• CAMPA to provide collaboration with other efforts

• We are looking forward to helping the PWFA research at FACET-II
Thank you for your attention!

Questions?