Discussion on Hosing Instability
In the Blow-Out PWFA

Weiming An
University of California Los Angeles
anweiming@ucla.edu

With help from Xinlu Xu, Lance Hildebrand and Warren Mori

http://picksc.idre.ucla.edu
Nonlinear Plasma Wake Field

Zeroth order problem: Beam Loading

Superposition is Not Satisfied for Strong Beam Load.

First order problem: Beam Hosing

* C. Huang et. al., PRL 99, 255001 (2007)
Hosing Instability in the Bubble

\[\partial^2_{ss} x_b + k^2_{\beta} x_b = k^2_{\beta} x_c \]
\[x''_c + c_r c_\psi \omega_0^2 x_c = c_r c_\psi \omega_0^2 x_b \]

Nonlinear Equation!

\[k_{\beta} = k_p / \sqrt{2 \gamma}, \quad \omega_0 = k_p / \sqrt{2} \]
\[c_r \equiv n_b R^2_b / r^2_0 \]
\[c_\psi \equiv 1 / (1 + \psi_0) \]

E-folding for the Growth Rate

\[1.3 \left[c_r c_\psi (k_{\beta} s)(\omega_0 \xi)^2 \right]^{1/3} \]

* C. Huang et. al., PRL 99, 255001 (2007)
Mitigating Hosing Instability

BNS Damping

Longitudinally correlated energy spread

\[
\frac{\partial^2 X_b}{\partial t^2} + \frac{\omega_{\beta}^2}{\omega_{\beta,0}} \left(\epsilon + \kappa_1 \Delta \gamma^2 \right) \frac{\partial X_b}{\partial t} + \omega_{\beta}^2 \left(1 + \kappa_2 \Delta \gamma^2 \right) (X_b - X_c) = 0
\]

* T. Mehrling et al., PRL 118, 174801 (2017)
Mitigating Hosing Instability

What about the trailing beam?

Drive Beam:
- $E = 10$ GeV,
- $I_{\text{peak}} = 15$ kA,
- $\sigma_r = 3.65 \ \mu m$, $\sigma_z = 12.77 \ \mu m$,
- $N = 1.0 \times 10^{10}$ (1.6 nC), $\varepsilon_N = 50 \ \mu m$

Trailing Beam:
- $E = 10$ GeV,
- $I_{\text{peak}} = 9$ kA,
- $\sigma_r = 3.65 \ \mu m$, $\sigma_z = 6.38 \ \mu m$,
- $N = 4.33 \times 10^9$ (0.69 nC), $\varepsilon_N = 50 \ \mu m$ (transversely offset by 1 \mu m)

Distance between two bunches: 150 \mu m

Plasma Density: 4.0×10^{16} cm$^{-3}$
Mitigating Hosing Instability

What about the trailing beam?

Drive Beam:\[E = 10 \text{ GeV}, I_{\text{peak}} = 15 \text{ kA} \]
\[\sigma_r = 3.65 \text{ µm}, \sigma_z = 12.77 \text{ µm}, \]
\[N = 1.0 \times 10^{10} (1.6 \text{ nC}), \varepsilon_N = 50 \text{ µm} \]

Trailing Beam:\[E = 10 \text{ GeV}, I_{\text{peak}} = 9 \text{ kA} \]
\[\sigma_r = 3.65 \text{ µm}, \sigma_z = 6.38 \text{ µm}, \]
\[N = 4.33 \times 10^{9} (0.69 \text{ nC}), \varepsilon_N = 50 \text{ µm} \]
(transversely offset by 1 µm)

Distance between two bunches: 150 µm

Plasma Density: \(4.0 \times 10^{16} \text{ cm}^{-3} \)

10% Energy Chirp
Mitigating Hosing Instability

\[\xi = -\sigma_z \]

\[\xi = 0 \]

\[\xi = \sigma_z \]

10% Energy Chirp

Overloading the Wake can compensate the chirp.
Drive Beam: $E = 10$ GeV, $I_{\text{peak}} = 15$ kA
$\sigma_r = 0.516 \, \mu m$, $\sigma_z = 12.77 \, \mu m$,
$N = 1.0 \times 10^{10}$ (1.6 nC), $\varepsilon_N = 1 \, \mu m rad$

Trailing Beam: $E = 10$ GeV, $I_{\text{peak}} = 9$ kA
$\sigma_r = 0.516 \, \mu m$, $\sigma_z = 6.38 \, \mu m$,
$N = 4.33 \times 10^9$ (0.69 nC), $\varepsilon_N = 1 \, \mu m rad$ (transversely offset by 1 μm)

Distance between two bunches: 150 μm
Plasma Density: 4.0×10^{16} cm$^{-3}$ (Hydrogen)
Killing the Hosing Instability

Blowout PWFA

Plasma Ion Motion (Talk on Thursday)

Electron beam

QEP02-XZ

Time = 5.00 [1/\(\omega_p\)]
Killing the Hosing Instability

\[\xi = -\sigma_z \]

\[\xi = 0 \]

\[\xi = \sigma_z \]

Drive Beam: \(E = 10 \text{ GeV}, I_{\text{peak}} = 15 \text{ kA} \)
\(\sigma_r = 0.516 \mu\text{m}, \sigma_z = 12.77 \mu\text{m} \),
\(N = 1.0 \times 10^{10} \text{ (1.6 nC)}, \quad \varepsilon_N = 1 \mu\text{mrad} \)

Trailing Beam: \(E = 10 \text{ GeV}, I_{\text{peak}} = 9 \text{ kA} \)
\(\sigma_r = 0.516 \mu\text{m}, \sigma_z = 6.38 \mu\text{m} \),
\(N = 4.33 \times 10^9 \text{ (0.69 nC)}, \quad \varepsilon_N = 1 \mu\text{mrad} \)
(transversely offset by 1 \mu\text{m})