Strained Superlattice
GaAs/GaAsP

DOE funded efforts to restore
High Polarization Photocathode production: Goals and Updates
Spin Polarized Photoemission from Bulk GaAs

\[E_{\text{gap}} = 1.42 \text{ eV} \]
\[\Delta = 0.34 \text{ eV} \]

\[\sigma^+ : \text{Right circularly polarized light} \]
\[\sigma^- : \text{Left circularly polarized light} \]
Breaking the 50% barrier

Eliminate degeneracy of $P_{3/2}$ state via “Interface Stress Method”

Application of a uniaxial strain removes the degeneracy of the $P_{3/2}$ state
Strained layer GaAs

- Polarization 75% >> 50% 😊
- Strain relaxes in 100 nm layer
- QE 0.1%

Strained layer superlattice GaAs/GaAsP

Active Region

100 nm

GaAs$_{0.64}$P$_{0.36}$

Buffer

2.5 μm

GaAs$_{(1-x)}$P$_x$ Graded Layer

2.5 μm

GaAs Substrate

D. Luh et al, SLAC, PESP2002

QE 1% and Polarization 85%

From Aaron Moy, SVT Assoc and SLAC, PESP2002
JLab polarization: since 1990’s

CEBAF Electron Polarization

POLARIZATION (%)

100 90 80 70 60 50 40 30 20 10 0

Spire –
Bandwidth
semiconductor

SVT Associates

1995

2000

2005

2010

2015

2020

2016: Last SSL
Photocathode
received at JLab
from SVT

Bulk GaAs

Strained GaAs:
GaAs on GaAsP

6 mA/W
100 nm

Strained Superlattice GaAs:
Layers of GaAs on GaAsP

30 mA/W

1 mA/W

6 Layers

Marcy Stutzman 10 Nov 2021 P3 Workshop
Innovation through SBIR program

• SVT SBIR Partnerships with SLAC or JLab for high polarization photocathodes:

• Various Superlattice Structures
 — GaAs/GaAsP
 — GaAsSb
 — AlGaAs/GaAs
 — Distributed Bragg Reflector

Variations
• Quantum Well thickness
• Barrier thickness
• Strain layer concentration
• Number of periods

Marcy Stutzman 10 Nov 2021 P3 Workshop
SBIR research program lifetime

• SBIR Program Goals include
 — Stimulate technological innovation
 — Use small business to meet Federal R/R&D needs

• SBIR Phases
 — Phase I explores the feasibility of innovative concepts with awards up to $250,000 and 12 months.
 — Phase II is the principal R&D effort, with awards up to $1,600,000 and 2 years.
 — Phase III: pursue commercial applications of their R&D with non-SBIR/STTR funding.
 • Market for high polarization photocathode material is small
 • Commercialization not financially viable

Marcy Stutzman 10 Nov 2021 P3 Workshop
Technical Challenges of Growing GaAs/GaAsP using GSMBE

- GSMBE (Gas source MBE) uses crackers for AsH$_3$ (arsine) and PH$_3$ (phosphine)
 - Both gasses Toxic, Flammable
 - Phosphorus grows on MBE walls
 - Generates phosphine gas & phosphoric acid when venting
 - Absorbs water and has high water vapor pressure when pumped back down
 - Residue cannot be scraped off - ignites
 - Careful degassing can solve this
 - Phosphine residue can cause high background in subsequent samples

SIMS of AlGaAs grown after Phosphorus contamination

Efforts to restore supply

• DOE Funding Opportunity 20-2310
 —MOCVD (*metal organic chemical vapor deposition*)
 • JLab: M. Poelker and M. Stutzman
 • BNL: E. Wang
 • ODU: S. Marsillac, B. Belfore
 —CBE (Chemical Beam Epitaxy)
 • JLab: M. Stutzman
 • UCSB: C. Palmstrøm, A. Engel

• MBE SSL GaAs/GaAsP Distributed Bragg Reflector
 —Sandia National Lab: Center for Integrated Nanotechnology
 • BNL: L. Cultrera

• Acken Optoelectronics Ltd., Suzhou China
 —Yiqiao Chen, formerly of SVT Associates
 —SSL GaAs/GaAsP photocathodes on order for evaluation
MBE, GSMBE, CBE and MOCVD

MBE
- Gas Source Molecular Beam Epitaxy
- elemental As, P, Ga
 - Pressure $\approx 10^{-8}$ mbar
 - Growth rates $\approx 1\ \mu$m/hr
 - Very precise control

GSMBE
- Gas Source Molecular Beam Epitaxy
- AsH_3, PH_3, elemental Gallium
 - Pressure $<10^{-4}$ mbar
 - Growth rates 0.5-1 μm/hr

CBE
- Chemical Beam Epitaxy
- AsH_3, PH_3, triethyl gallium (TEGa) or elemental Gallium
 - Pressure $<10^{-4}$ mbar
 - Growth rates 0.5-1 μm/hr

MOCVD
- Metal organic chemical vapor deposition
- AsH_3, PH_3, trimethylgallium (TMGa)
 - Pressures >100 mbar during growth
 - Growth Rates 10 μm/hr
 - Traditionally difficult to get sharp interfaces

Marcy Stutzman 10 Nov 2021 P3 Workshop
Wafer growth steps

- Epitaxial Buffer Layer grown on GaAs
- Graded GaAs to GaAs\(_{(1-x)}P_x\)
- GaAs\(_{(1-x)}P_x\) layer
- Superlattice
- Heavily doped top layer

Parameters to vary
- Substrate Temperature
- Source Temperature/Pressures
- Time
- Grading profile
- Underlying crystal orientation
CBE: Photocathode progress

Chris Palmstrøm Group, UCSB

- Aaron Engel, graduate student

- Chemical Beam Epitaxy System
CBE: Photocathode progress

- Computerized control developed for GaAs-GaAsP graded layer
- Interface quality between GaAs and GaAsP measured
 - SIMS analysis, x-ray diffraction
- Sample temperature, gas flux optimized for proper stoichiometry
- Testing strained GaAsP on GaAs initially

SIMS:
Composition vs. Depth

x-ray diffraction:
1 micron GaAs$_{0.75}$P$_{0.25}$ on GaAs
Testing analysis tools for interfaces
CBE: Photocathode progress

• Computerized control developed for GaAs->GaAsP graded layer
• Interface quality between GaAs and GaAsP measured
 — SIMS analysis,
• Sample temperature, gas flux optimized for proper stoichiometry
• X-ray Reciprocal space mapping
 — Plot of lattice distance during growth
 — Graded Layer with minimal strain
 — GaAs layer (5-10 nm) strained: lattice constant that of GaAsP

X-ray reciprocal space map for single 5-10 nm GaAs layer on GaAsPx
CBE: Photocathode progress

Next Steps

• Triethylgallium and phosphine create high vapor pressure background
 – Move to elemental Ga source?
 – Upgrade sample bonding from indium to gallium

• Grow photocathode material to test & test at JLab
MOCVD: Photocathode progress

Virginia Center for Photovoltaics

Dr. Sylvain Marsillac, Old Dominion University

Ben Belfore, ODU Graduate Student

The Rochester Institute of Technology III-V EPICenter
Results: MOCVD

Graded GaAs to GaAsPx layer growth:
Strain in GaAsPx varies with substrate temperature

Higher temperatures yield improved surface with moderate relaxation throughout
730°C growth temperature

Optimizing temperatures, graded layer profile
Results: MOCVD photocathode progress

- Graded layer “metamorphic” test runs
 - Optimizing parameters for highest relaxation
 - Hall effect measurements for dopant characterization

- Superlattice runs
 - Growing superlattice on each metamorphic run
 - Optimizing parameters with zinc dopant

- Characterization
 - Surface analysis (SIMS, TEM) planned
 - Ready for first polarization measurements

- JLab: MicroMott Polarimeter
- BNL: Specs Mott Polarimeter
 - Operational, testing various samples

Crystal growth by Ben Before under the supervision of Sylvian Marsillac, Old Dominion University
MOCVD system at Rochester Institute of Technology
Distributed Bragg Reflector

DBR structure has Fabry Perot structure
- Thickness tuned to desired wavelength
- Multiple passes -> more excited photons
- Polarization of light preserved

Wei Liu, Yiqiao Chen, Wentao Lu, Aaron Moy, Matt Poelker, Marcy Stutzman, and Shukui Zhang,
"Record-level quantum efficiency from a high polarization strained GaAs/GaAsP superlattice photocathode with distributed Bragg reflector",
Results: MBE DBR photocathode progress

- **BNL: Luca Cultrera**
 - Funding: Center for Integrated Nanotechnology
- **Sandia National Lab**
 - Several MBE growth systems
 - 3” wafers
- 240 nm Superlattice (vs. ~100 nm)
- First & second samples complete

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness</th>
<th>Carrier Density p/cm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs</td>
<td>5 nm</td>
<td>5×10^{35}</td>
</tr>
<tr>
<td>GaAs${0.62}$P${0.38}$ (30 pairs)</td>
<td>4/4 nm</td>
<td>5×10^{37}</td>
</tr>
<tr>
<td>GaAs${0.8}$P${0.2}$</td>
<td>300 nm</td>
<td>5×10^{38}</td>
</tr>
<tr>
<td>AlAs${0.7}$P${0.22}$/GaAs${0.8}$P${0.19}$ (10 pairs)</td>
<td>65/55 nm</td>
<td>5×10^{38}</td>
</tr>
<tr>
<td>GaAs${0.8}$P${0.2}$</td>
<td>2000 nm</td>
<td>5×10^{38}</td>
</tr>
<tr>
<td>GaAs\rightarrowGaAs${0.8}$P${0.2}$</td>
<td>2750 nm</td>
<td>5×10^{38}</td>
</tr>
<tr>
<td>GaAs buffer</td>
<td>200 nm</td>
<td>5×10^{38}</td>
</tr>
<tr>
<td>GaAs substrate</td>
<td></td>
<td>$>1 \times 10^{38}$</td>
</tr>
</tbody>
</table>

BNL Mott polarimeter measurements
- Good QE (>1%)
- Polarization ~80%

Issues: non-uniformity across photocathode
Future: Optimize and test

Representative diced GaAs wafer
Where do we go from here?

Recent Whitepaper sent to David Asner, BNL

Recommendations

• Short Term
 ─ We don’t have a domestic supplier
 ─ Both CEBAF at JLab and EIC will need high polarization photocathodes
 ─ Partnership with commercial vendors (such as SVT) or DOE labs (Sandia) could restore supply

 * Acken Optoelectronics Ltd., Suzhou China

• Longer Term
 ─ Useful to explore different technologies like MOCVD or CBE: university partnerships
 ─ Continue research: Novel materials, structures, activations
 ─ Future machines may have different demands

Status of High Spin-Polarization Photocathodes for the US DOE Program

L. Cultrera1, J. Grames2, M. Poelker2, T. Rao2, M.L. Stutzman1, E. Wang1

1 Brookhaven National Laboratory, Upton, NY
2 Thomas Jefferson National Accelerator Facility, Newport News, VA

Abstract: Highly spin polarized electron beams produced from GaAs photocathodes used at electron accelerator facilities are essential to the US DOE mission, and similarly to facilities world-wide. In this report, the evolution of spin-polarized GaAs photocathode technology for particle accelerators is introduced, followed by a status on the health of the US supply chain and ongoing US R&D. The report ends by describing the future needs for the US DOE program and makes recommendations to help inform developing a road map to meet the Nation’s strategic mission.
Conclusions

- Two university research partnerships in progress: MOCVD and CBE
- Sandia Laboratory MBE growth in progress: first samples tested
- Polarimeters and test beamlines available at JLab and BNL
 - JLab: Acken SSL on order
 - BNL tests: Sandia SSL DBR, Nagoya SSL, SVT SSL samples

Jefferson Lab Center for Injectors and Sources

Questions?

email: marcy@jlab.org
• **Recommendations**

A reliable source of highly spin-polarized photocathodes is essential to the success of the DOE Nuclear Physics programs at the CEBAF and EIC. We recommend a strategy with both Short Term and Long Term components to develop a reliable and healthy US supply chain.

•

Highest Recommendation – Short Term (immediate)

Our highest recommendation is to immediately support a competent and capable industrial partner (like SVT Associates) and/or a suitable DOE facility (like Sandia National Laboratories) to restore the reliable production of well-known superlattice GaAs/GaAsP photocathodes. This recommendation is meant to mitigate the risk to CEBAF operations or the timely development of the EIC at Brookhaven National Laboratory. Photocathodes may be stockpiled for future operation of CEBAF and EIC, however we urge a strategy which avoids future circumstances as exists today, with no US supply chain option. Relying on a single vendor/source is not ideal. If anything were to happen preventing the sole source of GaAs/GaAsP photocathodes to sustain production the chain of supply might break again.

•

Long Term (sustained)

Multiple industries, national labs and academia exploring alternative fabrication methods should be supported to explore versatile growth techniques. Growth techniques which are less expensive than MBE to maintain (like MOCVD, CBE), or those which may yield improved performance over existing superlattice photocathodes should be encouraged and funded. This approach may attract more diverse industrial and university partners, resulting in a potential greater applications. An ideal consequence of a more diverse infrastructure is a healthier technology industry utilizing spin polarized photocathodes. Our proposed strategy is not meant to not constrain activities only to GaAs technology. Rather we strongly support R&D for alternative polarized electron materials or structures which may outperform and supersede GaAs technology. Coupled with the progress in laser and SRF technology, this long term development will be critical to meet requirements of future science programs which could have requirements far more demanding than imagined today.

•
MOCVD: Increase growth temperature

~10 µm/hr graded layer growth rate
V/III: 20-25
730°C growth temperature

Higher temperature has considerably improved surface, moderate relaxation throughout.

Ends at ~26 % P
MOCVD monitoring: graded layer optimization

(100) 2° <110>
Average ΔP = 4.95%

~10 µm/hr graded layer growth rate
V/III: 20-25
730°C growth temperature

Higher temperature and higher ΔP steps begins well, levels out to 30% relaxation, and surface degrades during thick 35% buffer