ARGONNE WAKEFIELD ACCELERATOR FACILITY
PHOTOCATHODE R&D PROGRAM UPDATE

ERIC WISNIEWSKI
AWA FACILITY MANAGER, ANL/HEP

Session B
AWA RESEARCH THEMES

Long lasting, timeless research themes

THEME 1: Advanced Accelerator
- e.g. SWFA
 - High-gradient & high-efficiency SWFA & PWFA acceleration

THEME 2: Beam Manipulation
- e.g. Double Emittance Exchange
 - Beam manipulation and control. Beam Diagnostics.

THEME 3: Beam Production
- e.g. RF Photoinjector
 - High-brightness and high-charge electron sources, novel cathodes

APPLICATION
AWA STAFF (2021)

STRONG INDUSTRY CONNECTIONS

Advanced Accelerator Concepts
Chunguang Jing
Euclid/AWA

Controls & RF Systems
Wanming Liu

Mech. & Civil Engineering
Scott Doran

AWA Facility Manager
Eric Wisniewski

Making things work
Charles Whiteford

Beam Physics
Philippe Piot
NIU/APS/AWA

AWA Facility Manager
John Power

Beam Physics
Seong-Yeol Kim
(postdoc)

Beam Physics
Gwanghui Ha
(postdoc)

STRONG UNIVERSITY CONNECTIONS

Xueying Lu
NIU/APS/AWA

Xiaowei Wu

Advanced Accelerator Concepts

Controls & RF Systems

Mech. & Civil Engineering

AWA Facility Manager

Making things work

Early Career Award

New Hires

Joint Appointment

Guest Scientist

11 AWA STAFF ➢ 7 full-time, 4 part-time

Advanced Accelerator Concepts

Advanced Accelerator Concepts

Advanced Accelerator Concepts
High Gradient Cathode Testing in NCRF gun

- NCRF gun characterization of photocathodes and field emission cathodes
 - High gradient RF testing (ACT)
 - Field emission testing and imaging (ACT)
 - Charge, QE measurement and emitter mapping capability
 - Thermal emittance measurement and mapping

- High-quality photocathode beam generation

- Cathode Development
 - AWA developed and operates its own in-house high-charge large format Cs$_2$Te cathode deposition system
 - In-situ QE measurement vacuum chamber, second deposition chamber under construction
 - Kelvin probe work function (CPD) measurement vacuum chamber
 - SEM and other surface studies support available through other ANL divisions ie. CNM, MSD
AWA FACILITY OVERVIEW

3 L-band photoinjector beamlines (+ 1 X-band TW photoinjector), all beamlines dedicated to Accelerator Physics research: "the accelerator is the experiment"

Bunker is 130 ft long. Sited in Bldg 366 (Hibay with overhead cranes). AWA occupies about 50% of the building.
AWA FACILITY OVERVIEW

3 L-band photoinjector beamlines (+ 1 X-band TW photoinjector), all beamlines dedicated to Accelerator Physics research: "the accelerator is the experiment"

ARGONNE CATHODE TEST-STAND (ACT)

Bunker is 130 ft long. Sited in Bldg 366 (Hibay with overhead cranes). AWA occupies about 50% of the building.
AWA FACILITY OVERVIEW

3 L-band photoinjector beamlines (+ 1 X-band TW photoinjector), all beamlines dedicated to Accelerator Physics research: "the accelerator is the experiment"

Bunker is 130 ft long. Sited in Bldg 366 (Hibay with overhead cranes). AWA occupies about 50% of the building.
ARGONNE CATHODE TEST-STAND (ACT)

Standalone beamline dedicated to fundamental R&D on Field Emission and RF breakdown, novel cathodes, and low energy beam applications

- **Capability**
 - FE/BD study: BD location, FE imaging
 - Cathode study: QE, charge, transverse profile
 - Application: low energy beam (field emission/photoemission) delivered with quad triplet focusing to the ample space at the end of the beamline
ARGONNE CATHODE TEST-STAND (ACT)

Details

- L-band 2.5 MW
- Vacuum: 5x10^{-9} Torr
- Rep rate: 2 Hz
- Duration: 5 µs flat top
- Field for DFEA experiments: 10-35 MV/m
- Field for breakdown studies of flat cathode: 0-100 MV/m
- Protruding tip cathode: max field up to 700 MV/m

Waveguide switches

261 nm, 0.3-6 ps laser

Space Available for future extension
RF testing at high gradient
- RF testing high gradient 0-100 MV/m with flush-mounted flat cathode
- RF testing high gradient up to 700 MV/m with a protruding cathode

Dark current imaging capability: features include
- solenoid focusing
- selectable collimator beamline
- imaging optics setup with 2” YAG screens

Laser input system
- 262 nm laser
- 1 mJ per pulse
- 0.4-6 ps variable pulse length
- 2 Hz rep rate

Planned upgrades:
- Load-lock system
- MLA based laser homogenizer
Currently three formats for cathode sample testing at the ACT exist

- A one-piece machined and polished cathode (original - example)
- Three-piece cartridge cathode with removable puck
 - Solid metal puck choice of substrate material
 - Thin-film deposited on metal puck in air
 - Re-usable holder
- Three-piece cartridge cathode with captured thin disk
 - Eliminates the need to machine pucks
 - Re-usable holder
- All holders use the same contact spring and actuator
3-PIECE SAMPLE HOLDER - PUCK STYLE

Custom re-usable cathode sample holder

- Some details
 - aluminum or stainless, other material possible
 - surface study friendly design
 - Provides good electrical contact
 - Proven robust design

- Features:
 - Cost-effective: no expense machining pucks; replace only the thin film, re-use the cathode cartridge.
 - Efficient: AWA can pre-load additional cartridges and reduce the turn-around time

- Practical Info
 - Load time is about 30 min. Or less
 - Gun is always purged with dry Nitrogen from a Dewar.
 - Pump time is 3-5 days depending on vacuum requirements.
 - A planned load-lock system installation will improve pumping time
3-PIECE SAMPLE HOLDER - CAPTURED THIN DISK

Custom re-usable cathode sample holder

- Some details
 - Developed in conjunction with G. Chen's UNCD studies
 - THIN DISK IS PLACED IN ELECTRICAL CONTACT WITH BODY OF CATHODE AND RETAINING RING CAPTURES IT
 - Provides good electrical contact
 - Proven design

- Features:
 - Cost-effective: no expense machining pucks; replace only the thin film, re-use the cathode cartridge.
 - Efficient: AWA can pre-load additional cartridges and reduce the turn-around time

- Practical Info
 - Load time is about 30 min. Or less
 - Gun is always purged with dry Nitrogen from a Dewar.
 - Pump time is 3-5 days depending on vacuum requirements.
 - A planned load-lock system installation will drastically reduce this.
AWA CATHODE RESEARCH PROGRAM

– Overview (2019-21)
– Selected highlights
CATHODE RESEARCH

In-house: The AWA group & Collaborators: IIT + LANL + SLAC/LCLS + SLAC/THz

PHOTOCATHODES

RECENT

FUTURE
- (SLAC/LCLS) John Llewellyn for LCLSII-HE cathode
 - Multiakali photocathode study as a function of preparation methods
 - Primary Goal: Measure field emission and MTE as a function of gradient
 - Stretch goal: MTE at multiple laser wavelengths
CATHODE RESEARCH

In-house: The AWA group & Collaborators: IIT + LANL + SLAC/LCLS + SLAC/THz

FIELD EMISSION CATHODES

RECENT

FUTURE
- **(SLAC/THz gun) Emilio Nanni – M. Schneider**
 - UNCD FE cathodes studies towards a THz e- gun.
Highlight 1 (photocathode)

NCRF GUN CHARACTERIZATION OF PHOTOCATHODES

1. (N)UNCD photocathode characterization on ACT compared with the results obtained in DC guns; G. Chen/L. Spentzouris/et al., result: Ph.D. thesis and two APL papers*

Highlight 2 (field emission)

NCRF GUN CHARACTERIZATION OF FIELD EMISSION CATHODE

2. Pattern beam generation from field emission array cathode

(K. Nichols/H. Andrews/E. Simakov, LANL, APL paper*)

- Aims for bunch train generation together with emittance exchange
- Observed pattern beam at 15 MV/m on ACT

SURPRISE ANNOUNCEMENT

BREAKTHROUGH IN HIGH GRADIENT PHOTOCATHODE X-BAND GUN
AN APPLICATION OF SHORT PULSE ACCELERATION

- Ultrashort RF pulse, < 10 ns
- Targeting >300 MV/m, 200nm, 100pC at room temperature
- Low dark current due to duty cycle

DESKTOP

AWA drive beam

Power Extractor

Adjustable power splitter

TW-photogun

Diagonal beamline

X-band gun

Linac

Laser injection port

Emittance simulation
BREAKDOWN TEST AT AWA (2020) AND THE FIRST BEAM (2021)

To be published
SUMMARY

AWA maintains an active cathode research program on field emission and photoemission cathodes.

- The Facility operates and maintains 3 NCRF photoinjectors
- Capabites for testing field emission and photocathodes.
- The Argonne Cathode Test-stand (ACT) beamline is dedicated to high-quality electron source R&D in a rich, collaborative environment.
 - High quality photocathode beam generation
 - NCRF gun characterization of photocathodes
 - NCRF gun characterization of field emission cathodes
- Expanded capabilities for growing photocathodes under development.
 - The secondary photocathode prep chamber and load-lock system (under construction) will soon provide additional resources for photocathode studies.
- **X-band RF photocathode gun breakthrough.**
 - To be published.
THANK YOU FOR YOUR ATTENTION
ARGONNE CATHODE TEST-STAND (ACT)

- **L-band single-cell rf gun**
 - High gradient (100 MV/m) with modest rf power (2.5 MW)

- **Detachable cathode**
 - Regular flat cathode ~Φ20 mm, metallic
 - Pin-shape cathode ~Φ1 mm, metallic
 - 3-part cathode metallic/advanced
The ACT operates as an independent beamline in the same bunker but not connected to other AWA beamlines.

The high-field L-band gun is powered with one of the AWA drive beam klystrons. An RF waveguide switch gives AWA the ability to easily transfer the RF power from the drive linac accelerating cavity to the ACT gun with adjustable This, along with careful scheduling, provides flexibility for collaborators to operate the ACT even while the other beamlines may be unavailable due to experiment installation or other circumstances.

The ACT started out as an RF breakdown studies beamline where we can quickly install cathodes and performed quick turnaround RF only experiments. With the addition of laser input, and low power beam diagnostics we have been able to expand these capabilities to include photoemission cathode studies.

Recent Papers

Future/Nascent Research

- John Llewellyn – SLAC LCLSII-HE cathode studies
- Emilio Nanni – M. Schneider UNCD cathode studies

https://www.anl.gov/awa/breakdown-studies
BRIEF HISTORY OF AWA’S PHOTOCATHODE R&D

▪ **Witness gun (~2001-present)**
 - Mg photocathode, conical slug set in a copper plug, designed for low to moderately high charge

▪ **Drive gun (~2013-present)**
 - Cs$_2$Te on Mo plug, 30 mm diameter, 60-75 MV/m
 - World’s highest charge photocathode: up to 600 nC with bunch train
WORLD’S HIGHEST CHARGE \(\text{Cs}_2\text{Te} \) CATHODE IN A HIGH GRADIENT L-BAND GUN

- High Gradient L-band gun (80 MV/m)
- Large area cathodes for high charge short bunches
- Single Bunch
 - 100 \(nC \) single bunch beams
- Bunch trains
 - 8x60 \(nC \)
 - \(I_{pk} \) of 17 kiloAmps
 - \(I_{avg} \) 100 Amperes

Current project (to be completed soon): adding a second deposition chamber for cathode studies to be used in conjunction with the ACT.

8 bunch train FCT signal

2.5% Operating QE at 75 MV/m for 2 years

AWA photocathode deposition chamber (original)