Ab initio many-body photoemission theory of transverse momentum distributions of photoelectrons from single-crystal materials: PbTe(111) as a case study*

J. Kevin Nangoi,† S. Karkare, R. Sundararaman, H. A. Padmore, and T. A. Arias

1Cornell University, 2Arizona State University, 3Rensselaer Polytechnic Institute, 4Lawrence Berkeley National Laboratory

† jn459@cornell.edu

Why need *ab initio* theory?

- To understand fundamental processes relevant to MTE, e.g.
 - scattering between electrons and phonons (crystal vibrations)
 - bulk & surface effects: emission of bulk & surface electrons

Outline

- Motivation for *ab initio* studies of photoemission from PbTe(111)
- *Ab initio* bulk photoemission theory including phonon effects
- Results & interpretations, comparison with our experiments
- Further improvements to theory by including surface effects
- Summary
Motivation for PbTe(111)

- Previous predictions* yield MTE ≤ 15 meV
 - Emission directly to vacuum
- Our experiments 10–20× larger and shows photoemission below threshold
 - Light penetration depth ~200 Å
 ⇒ bulk emission important?
 - Phonons can affect e⁻ momenta
 ⇒ phonon effects on MTE important?
- Need new ab initio photoemission theory including bulk emission & phonon effects

*W. A. Schroeder, T. Li, and B. Rickman, P3 2016.
Ab initio Bulk Photoemission Theory*

More bulk e\(^-\) than surface e\(^-\)

1. **Photon** excites bulk e\(^-\)-h\(^+\) pair at rate \(\nu\)
 - Direct: photon \(\rightarrow\) e\(^-\)-h\(^+\)
 - Phonon-mediated: photon + phonon \(\rightarrow\) e\(^-\)-h\(^+\)

2. e\(^-\) in a **coherent** outgoing scattering state
 - Conservation of energy and transverse momentum gives rise to transmission probability \(t(q)\)
 - Calculate photoexcitation transition rates \(\nu\) and transmission probabilities \(t\)
 - MTE = \(\langle \frac{\hbar^2}{2m} q_{||}^2 \rangle\) weighted by \(\nu \cdot t(q)\)

Why need *ab initio* theory?

- To understand fundamental processes relevant to MTE, e.g.
 - scattering between electrons and phonons (crystal vibrations)
 - bulk & surface effects: emission of bulk & surface electrons

Outline

- Motivation for *ab initio* studies of photoemission from PbTe(111)
- *Ab initio* bulk photoemission theory including phonon effects
- **Results & interpretations, comparison with our experiments**
- Further improvements to theory by including surface effects
- Summary
Results: Calculated MTE from PbTe(111)

- Direct only reproduces magnitude, but has higher threshold

Bulk emission important!

Results: Calculated MTE from PbTe(111)

- **Direct + phonon** reproduces photoemission below threshold

Phonon effects important below threshold!

Results: Calculated MTE from PbTe(111)

- **Direct + phonon** reproduces photoemission below threshold

With two big questions answered, smaller questions to explore:

1. Phonon effects above direct threshold significant?
2. Reason for observed MTE dip centered at 4.9 eV?

First exploration: Significance of phonon effects

- Phonon effects above direct threshold significant!

First exploration: Significance of phonon effects

- Phonon effects above direct threshold **significant!**

For PbTe(111), phonon effects on photoemission important & significant below & above direct threshold

Second exploration: MTE dip at 4.9 eV

Calculations include emission of only bulk electrons
Second exploration: MTE dip at 4.9 eV

⇒ Contributions at 0 TE likely due to emission of *surface* electrons
Second exploration: MTE dip at 4.9 eV

⇒ Contributions at 0 TE likely due to emission of surface electrons
Second exploration: MTE dip at 4.9 eV

⇒ Contributions at 0 TE likely due to emission of surface electrons
Second exploration: MTE dip at 4.9 eV

⇒ Contributions at 0 TE likely due to emission of surface electrons

Need to combine bulk and surface contributions to photoemission on equal footing through a unified photoemission theory.
Why need *ab initio* theory?

- To understand fundamental processes relevant to MTE, e.g.
 - scattering between electrons and phonons (crystal vibrations)
 - bulk & surface effects: emission of bulk & surface electrons

Outline

- Motivation for *ab initio* studies of photoemission from PbTe(111)
- *Ab initio* bulk photoemission theory including phonon effects
- Results & interpretations, comparison with our experiments
- **Further improvements to theory by including surface effects**
- Summary
Unified Photoemission Theory: One-step Model*

Instead of treating photoexcitation and surface transmission separately ...

\[\hbar \Omega: K \approx 0 \]

Bulk photoexcitation

Surface transmission

Surface

\[\hbar \omega: \alpha, k_p \]

\[b', k_f \]

\[b, -k \]
Unified Photoemission Theory: One-step Model*

... treat them both *simultaneously* in a single step

- Requires expressing electronic states in *full* space
 = material half-space + vacuum half-space
 - Bulk, surface, vacuum states on equal footing
- **Challenge**: non-periodic boundaries in surface normal direction

New *ab initio* one-step photoemission theory

- Developed new technique combining electron Green’s function approach with plane-wave DFT to handle non-periodic boundaries
- Currently implementing direct photoemission; will implement phonon-mediated photoemission
 - Then, apply to PbTe(111) and others e.g. Cs-Sb, Cs-GaAs, etc.
- Ultimately, plan to study photoemission from e.g. *photocathodes coated with 2D materials* (talks in Session A yesterday)
Summary

- Ab initio many-body photoemission theory for predicting MTE
- Case study on single-crystal PbTe(111):
 - Calculated MTEs same/similar magnitude as observed MTEs
 - Phonon effects important & significant
 - Surface emission seems significant at higher photon energies
 ⇒ Need to include bulk and surface contributions on equal footing

Developing new ab initio one-step photoemission theory to include bulk and surface emissions in a unified framework
- Plan to study photocathodes coated with 2D materials

Contact: jn459@cornell.edu