Multidimensional ultrafast X-ray spectroscopy; a novel window into elementary molecular events and conical intersections

Shaul Mukamel

Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, USA

Abstract:
Multidimensional spectroscopy uses sequences of optical pulses to study dynamical processes in complex molecules through correlation plots involving several time delay periods. Extensions of these techniques to the x-ray regime will be discussed. Ultrafast nonlinear x-ray spectroscopy is made possible by newly developed free electron laser and high harmonic generation sources. The attosecond duration of X-ray pulses and the atomic selectivity of core X-ray excitations offer a uniquely high spatial and temporal resolution. We demonstrate how stimulated Raman detection of an X-ray probe may be used to monitor the phase and dynamics of the nonequilibrium valence electronic state wavepacket created by e.g. photoexcitation, photoionization and Auger processes. Conical intersections (CoIn) dominate the pathways and outcomes of virtually all photophysical and photochemical molecular processes. Despite extensive experimental and theoretical effort, CoIns have not been directly observed yet and the experimental evidence is being inferred from fast reaction rates and some vibrational signatures. Novel ultrafast X-ray probes for these processes will be presented. Short X-ray pulses can directly detect the passage through a CoIn with the adequate temporal and spectral sensitivity. The technique is based on a coherent Raman process that employs a composite femtosecond/attosecond X-ray pulse to directly detect the electronic coherences (rather than populations) that are generated as the system passes through the CoIn. Applications will also be made for time-resolved diffraction and detecting molecular chirality.

References


LCLS-SLAC Symposium-September 28, 2018