Small-Cell Serial Femtosecond Crystallography as a Method for High-Throughput Materials Discovery

Elyse A. Schriber¹², Aaron S. Brewster³, Nicholas K. Sauter³, Robert Bolotovsky³, Daniel J. Rosenberg³⁴, Raymond G. Sierra³, Andrew Aquila⁵, <u>J. Nathan Hohman⁴</u>

¹Institute of Materials Science, University of Connecticut
²Molecular Foundry, Lawrence Berkeley National Laboratory
³Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory
⁴Graduate Group in Biophysics, University of California, Berkeley
⁵Linac Coherent Light Source, Stanford Linear Accelerator Center
E-mail: james.hohman@uconn.edu

Our collaboration recently demonstrated proof-of-principle success for small unit cell serial femtosecond X-ray crystallography (SC-SFX) using an X-ray free electron laser (XFEL) as a strategy for producing datasets that can be used for *de novo* structure solutions. This achievement marks a significant advancement beyond the conventional SFX capabilities used for protein structure determination. We were able to the solve a partial structure for the metal organic coordination polymer, silver benzeneselenolate (6 x 7 x 29 Å unit cell dimensions) by direct methods at a resolution of 1.5 Å from datasets collected at LCLS and 1.2 Å from datasets collected at SACLA (Schriber, et al. *in preparation*, 2019). SC-SFX in combination with the femtosecond time resolution of the XFEL will allow us to study structural dynamics in materials through pump-probe experiments. We present our initial results using SC-SFX and future goals towards high-throughput structure solutions and structural dynamics investigations of novel materials.